Heat Conduction
ثبت نشده
چکیده
Heat conduction modelling ........................................................................................................................... 1 Case studies ........................................................................................................................................... 2 Analytical solutions....................................................................................................................................... 3 Conduction shape factor (steady state) ..................................................................................................... 4 Reduction to the main dimension (steady state) ....................................................................................... 5 Planar, cylindrical, and spherical energy sources, internal or interfacial ............................................. 6 Multilayer composite walls ................................................................................................................... 8 Critical radius ........................................................................................................................................ 8 Rods and fins ......................................................................................................................................... 9 Heat source moving at steady state along a rod .................................................................................. 12 Reduction by dimension similarity (unsteady state) ............................................................................... 12 Energy deposition in unbounded media .............................................................................................. 13 Thermal contact in semi-infinite media .............................................................................................. 17 Freezing and thawing .......................................................................................................................... 20 Reduction by separation of variables ...................................................................................................... 21 Unsteady problems in 1-D .................................................................................................................. 21 Periodic solutions in 1-D..................................................................................................................... 26 Steady problems in 2-D....................................................................................................................... 27 Other analytical methods to solve partial differential equations ............................................................. 31 Duhamel`s theorem ............................................................................................................................. 32 Numerical solutions .................................................................................................................................... 32 Global fitting ........................................................................................................................................... 34 Lumped network ..................................................................................................................................... 37 Spectral methods ..................................................................................................................................... 38 Residual fitting ........................................................................................................................................ 38 Collocation method ............................................................................................................................. 39 Least square method (LSM) ................................................................................................................ 39 Galerkin method .................................................................................................................................. 39 Finite differences..................................................................................................................................... 40 Finite elements ........................................................................................................................................ 44 Boundary elements .................................................................................................................................. 44
منابع مشابه
A truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملParasitic Effect of Tube Wall Longitudinal Heat Conduction on Cryogenic Gas Temperature
Longitudinal heat conduction is an important parameter in the cryogenic field, especially in cryogenic heat exchangers. In the present work, the parasitic effect of tube wall longitudinal heat conduction on temperature measurement has been studied in cryogenic laminar hydrogen flow. The effects of various parameters such as wall cold end temperature, wall thermal conductivity, gas volumetric fl...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملHeat Transfer in Semitransparent Medium Caused by Laser Pulse
In this paper, the combination of conduction with radiation into a semitransparent medium which includes absorption, emission and scattering has been investigated. In order to Study the conduction in medium, the Non-Fourier heat conduction has been applied. In this model there is a time delay between heat flux and temperature gradient. Also, in contrast with Fourier heat conduction, the speed o...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کامل